RELEASES¶
History of changes¶
1.1.1 (Latest)¶
Minor bug fix to ensure that all prediction calls can be carried.
1.1.0¶
Updating documentation introduction of the package
Added the chi square divergence in GEMINIs:
gemclus.gemini.ChiSquareGEMINIChanged
gemclus.linear.KernelRIMimplementation to directly depend on linear models.Fixing compatibility with numpy>=2
1.0.0¶
Adding the kernelised version of RIM with:
KernelRIMAdding the dynamic version of paths for feature selection in sparse models. A simply argument
dynamic=Trueactivates the dynamic mode.Possibility of passing custom kernels and metrics to sparse models. This is not compatible with the dynamic mode.
No need to specify any longer the full partition of the features in the
groupsarguments of the sparse modelsNew GEMINIs:
HellingerGEMINI,TVGEMINIandKLGEMINIIntroducing generic models that can be combined with any GEMINI
gemclus.linear.LinearModel,gemclus.mlp.MLPModel,gemclus.nonparametric.CategoricalModel,gemclus.sparse.SparseLinearModel,gemclus.sparse.SparseMLPModelThe GEMINI parametrisation of DOUGLAS can now be done through string
The dedicated MMD and Wasserstein models remain and support custom kernel/metric parameters
Fusing GEMINIs into a single class per distance
gemclus.gemini.MMDOvAandgemclus.gemini.MMDOvOare nowgemclus.gemini.MMDGEMINIgemclus.gemini.WassersteinOvAandgemclus.gemini.WassersteinOvOare nowgemclus.WassersteinGEMINIBoth the MMD and Wasserstein GEMINI now support custom kernel/metric parameters
Fixing a gradient mistake in the
gemclus.MI
0.2.0¶
Adding a new sparse logistic regression model trained with mutual information instead of MMD GEMINI:
gemclus.sparse.SparseLinearMIAdding new package containing methods for unsupervised tree clustering with end-to-end training:
gemclus.tree. The package features a CART-like algorithm for clustering namedKauriand a differentiable tree namedDouglasExperimental: A method for adding constraints of type must-link cannot-link to discriminative models:
gemclus.add_mlcl_constraintMinor fixes in documentation
Better compatibility with scikit learn 1.3.0 regarding parameter constraint check
0.1.1¶
Fixing the ABCMeta parameter validation problem for the
draw_gmmmethod for retrocompatibility with Python 3.8.Constraining the package to Python>=3.8 to respect the requirements of the package.
Minor fix on the
get_selectionmethod for the Linear sparse models to respect the 1d output shape of the array.
0.1.0¶
Isolating the definition of GEMINIs in a separate classes for external usages:
gemini.MMDOvO,gemini.WassersteinOvAetc.Adding the nonparametric models in package
gemclus.nonparametricwith 2 additional examples for its usage in graph node clustering.Fixing control variables in the
pathmethod for spars models.
0.0.2¶
Adding the Gaussian+Student-t mixture dataset:
gstmMethod for sampling multivariate student-t distributions:
multivariate_student_tAdding tests for
datapackageAdding the possibility of a precomputed kernel/distance passed to
fitAdding batch size parameters
Fixing zero division in sparse linear model proximal gradient