RELEASES¶
History of changes¶
In development (1.1.0)¶
Updating documentation introduction of the package
Added the chi square divergence in GEMINIs:
gemclus.gemini.ChiSquareGEMINI
Changed
gemclus.linear.KernelRIM
implementation to directly depend on linear models.Fixing compatibility with numpy>=2
1.0.0 (Latest)¶
Adding the kernelised version of RIM with:
KernelRIM
Adding the dynamic version of paths for feature selection in sparse models. A simply argument
dynamic=True
activates the dynamic mode.Possibility of passing custom kernels and metrics to sparse models. This is not compatible with the dynamic mode.
No need to specify any longer the full partition of the features in the
groups
arguments of the sparse modelsNew GEMINIs:
HellingerGEMINI
,TVGEMINI
andKLGEMINI
Introducing generic models that can be combined with any GEMINI
gemclus.linear.LinearModel
,gemclus.mlp.MLPModel
,gemclus.nonparametric.CategoricalModel
,gemclus.sparse.SparseLinearModel
,gemclus.sparse.SparseMLPModel
The GEMINI parametrisation of DOUGLAS can now be done through string
The dedicated MMD and Wasserstein models remain and support custom kernel/metric parameters
Fusing GEMINIs into a single class per distance
gemclus.gemini.MMDOvA
andgemclus.gemini.MMDOvO
are nowgemclus.gemini.MMDGEMINI
gemclus.gemini.WassersteinOvA
andgemclus.gemini.WassersteinOvO
are nowgemclus.WassersteinGEMINI
Both the MMD and Wasserstein GEMINI now support custom kernel/metric parameters
Fixing a gradient mistake in the
gemclus.MI
0.2.0¶
Adding a new sparse logistic regression model trained with mutual information instead of MMD GEMINI:
gemclus.sparse.SparseLinearMI
Adding new package containing methods for unsupervised tree clustering with end-to-end training:
gemclus.tree
. The package features a CART-like algorithm for clustering namedKauri
and a differentiable tree namedDouglas
Experimental: A method for adding constraints of type must-link cannot-link to discriminative models:
gemclus.add_mlcl_constraint
Minor fixes in documentation
Better compatibility with scikit learn 1.3.0 regarding parameter constraint check
0.1.1¶
Fixing the ABCMeta parameter validation problem for the
draw_gmm
method for retrocompatibility with Python 3.8.Constraining the package to Python>=3.8 to respect the requirements of the package.
Minor fix on the
get_selection
method for the Linear sparse models to respect the 1d output shape of the array.
0.1.0¶
Isolating the definition of GEMINIs in a separate classes for external usages:
gemini.MMDOvO
,gemini.WassersteinOvA
etc.Adding the nonparametric models in package
gemclus.nonparametric
with 2 additional examples for its usage in graph node clustering.Fixing control variables in the
path
method for spars models.
0.0.2¶
Adding the Gaussian+Student-t mixture dataset:
gstm
Method for sampling multivariate student-t distributions:
multivariate_student_t
Adding tests for
data
packageAdding the possibility of a precomputed kernel/distance passed to
fit
Adding batch size parameters
Fixing zero division in sparse linear model proximal gradient