RELEASES¶
History of changes¶
1.1.1 (Latest)¶
- Minor bug fix to ensure that all prediction calls can be carried. 
1.1.0¶
- Updating documentation introduction of the package 
- Added the chi square divergence in GEMINIs: - gemclus.gemini.ChiSquareGEMINI
- Changed - gemclus.linear.KernelRIMimplementation to directly depend on linear models.
- Fixing compatibility with numpy>=2 
1.0.0¶
- Adding the kernelised version of RIM with: - KernelRIM
- Adding the dynamic version of paths for feature selection in sparse models. A simply argument - dynamic=Trueactivates the dynamic mode.
- Possibility of passing custom kernels and metrics to sparse models. This is not compatible with the dynamic mode. 
- No need to specify any longer the full partition of the features in the - groupsarguments of the sparse models
- New GEMINIs: - HellingerGEMINI,- TVGEMINIand- KLGEMINI
- Introducing generic models that can be combined with any GEMINI - gemclus.linear.LinearModel,- gemclus.mlp.MLPModel,- gemclus.nonparametric.CategoricalModel,- gemclus.sparse.SparseLinearModel,- gemclus.sparse.SparseMLPModel
- The GEMINI parametrisation of DOUGLAS can now be done through string 
- The dedicated MMD and Wasserstein models remain and support custom kernel/metric parameters 
 
- Fusing GEMINIs into a single class per distance - gemclus.gemini.MMDOvAand- gemclus.gemini.MMDOvOare now- gemclus.gemini.MMDGEMINI
- gemclus.gemini.WassersteinOvAand- gemclus.gemini.WassersteinOvOare now- gemclus.WassersteinGEMINI
- Both the MMD and Wasserstein GEMINI now support custom kernel/metric parameters 
 
- Fixing a gradient mistake in the - gemclus.MI
0.2.0¶
- Adding a new sparse logistic regression model trained with mutual information instead of MMD GEMINI: - gemclus.sparse.SparseLinearMI
- Adding new package containing methods for unsupervised tree clustering with end-to-end training: - gemclus.tree. The package features a CART-like algorithm for clustering named- Kauriand a differentiable tree named- Douglas
- Experimental: A method for adding constraints of type must-link cannot-link to discriminative models: - gemclus.add_mlcl_constraint
- Minor fixes in documentation 
- Better compatibility with scikit learn 1.3.0 regarding parameter constraint check 
0.1.1¶
- Fixing the ABCMeta parameter validation problem for the - draw_gmmmethod for retrocompatibility with Python 3.8.
- Constraining the package to Python>=3.8 to respect the requirements of the package. 
- Minor fix on the - get_selectionmethod for the Linear sparse models to respect the 1d output shape of the array.
0.1.0¶
- Isolating the definition of GEMINIs in a separate classes for external usages: - gemini.MMDOvO,- gemini.WassersteinOvAetc.
- Adding the nonparametric models in package - gemclus.nonparametricwith 2 additional examples for its usage in graph node clustering.
- Fixing control variables in the - pathmethod for spars models.
0.0.2¶
- Adding the Gaussian+Student-t mixture dataset: - gstm
- Method for sampling multivariate student-t distributions: - multivariate_student_t
- Adding tests for - datapackage
- Adding the possibility of a precomputed kernel/distance passed to - fit
- Adding batch size parameters 
- Fixing zero division in sparse linear model proximal gradient